SCHRIFTENREIHE DES FACHBEREICHS MATHEMATIK A Parallel Implementation of Dual-Primal FETI Methods for Three Dimensional Linear Elasticity Using a Transformation of Basis by
نویسندگان
چکیده
Dual-primal FETI methods for linear elasticity problems in three dimensions are considered. These are nonoverlapping domain decomposition methods where some primal continuity constraints across subdomain boundaries are required to hold throughout the iterations, whereas most of the constraints are enforced by Lagrange multipliers. An algorithmic framework for dualprimal FETI methods is described together with a transformation of basis to implement the primal constraints. Numerical results obtained from a parallel implementation of these algorithms applied to a model benchmark problem and to problems with more complicated geometries from industrial and biological applications are provided. These results show that the presented FETI-DP algorithms are numerical and parallel scalable.
منابع مشابه
Some Computational Results for Dual-Primal FETI Methods for Elliptic Problems in 3D
Iterative substructuring methods with Lagrange multipliers for elliptic problems are considered. The algorithms belong to the family of dual-primal FETI methods which were introduced for linear elasticity problems in the plane by Farhat et al. [2001] and were later extended to three dimensional elasticity problems by Farhat et al. [2000]. Recently, the family of algorithms for scalar diffusion ...
متن کاملSelecting Constraints in Dual-Primal FETI Methods for Elasticity in Three Dimensions
Iterative substructuring methods with Lagrange multipliers for the elliptic system of linear elasticity are considered. The algorithms belong to the family of dual-primal FETI methods which was introduced for linear elasticity problems in the plane by Farhat et al. [2001] and then extended to three dimensional elasticity problems by Farhat et al. [2000]. In dual-primal FETI methods, some contin...
متن کاملHighly Scalable Parallel Domain Decomposition Methods with an Application to Biomechanics
Highly scalable parallel domain decomposition methods for elliptic partial differential equations are considered with a special emphasis on problems arising in elasticity. The focus of this survey article is on Finite Element Tearing and Interconnecting (FETI) methods, a family of nonoverlapping domain decomposition methods where the continuity between the subdomains, in principle, is enforced ...
متن کاملA Neumann-dirichlet Preconditioner for a Feti-dp Formulation with Mortar Methods
In this article, we review a dual-primal FETI (FETI-DP) method with mortar methods. The mortar matching condition is used as the continuity constraints for the FETI-DP formulation. A Neumann-Dirichlet preconditioner is investigated and it is shown that the condition number of the preconditioned FETI-DP operator for the two-dimensional elliptic problem is bounded by C maxi=1,...,N{(1 + log (Hi/h...
متن کاملA FETI-DP Formulation of Three Dimensional Elasticity Problems with Mortar Discretization
Abstract. In this paper, a FETI-DP formulation for the three dimensional elasticity problem on non-matching grids over a geometrically conforming subdomain partition is considered. To resolve the nonconformity of the finite elements, a mortar matching condition on the subdomain interfaces (faces) is imposed. By introducing Lagrange multipliers for the mortar matching constraints, the resulting ...
متن کامل